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We consider a polymer model on Za+ where to each edge e is associated a 
random variable v(e). A polymer configuration is represented by a directed path 
r and has a weight exp[-flY'~,v(e)], with r =  1/T the inverse temperature. 
We extend some rigorous results that have been obtained for the ground state 
of this model to finite temperatures. In particular we obtain some upper and 
lower bounds on sample-to-sample free energy fluctuations, and also rigorous 
scaling inequalities between the exponents describing free energy fluctuations 
and transversal displacements of polymer configurations. 
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1. I N T R O D U C T I O N  

Directed polymers in a random environment have been a subject of great 
interest in recent years, representing one of the simplest models where one 
finds a low temperature phase in which the quenched disorder has a non- 
perturbative effect on determining the behavior of the system. 1~-7) Despite 
the progress made in the heuristic understanding of such models, much less 
has been done on the rigorous side. In this work we extend some rigorous 
results that have been obtained for the ground state of one class of directed 
polymer models ~8-~) to nonzero temperature. 

The directed polymer model we are going to consider is defined as 
follows. Initially, to each edge e = (a, ~'), between nearest neighbor sites t7 
and ~" of Z d we attach a non-negative random variable v(e) (the "poten- 
tial" associated with the edge e). We consider the simplest situation where 
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these random variables are independent and identically distributed (i.i.d.) 
with common distribution function G(x) and define for a path r of length n 
(a sequence of nearest neighbor sites v'o, V'l ,---, v', and edges e i--(v ' i - l ,  ffi)), 
the energy of r as 

E(r) = ~ v(e,) (1.1) 
i = l  

We now restrict ourselves to directed paths, that is, we are allowed to travel 
only along paths whose coordinates never decrease and for a given directed 
path r from the origin 0 to a point .~ in Z d assign a probability 

/~(r; co) e x p [ - f i E ( r ;  co)] 
= Z~(co) (1.2) 

Here co denotes a given realization of the random potentials (so/t~(r) is a 
measure-yalued random variable on the underlying probability space where 
the potentials are defined) and the partition function 

Z~,(co) = ~ exp[ --fiE(r; to)] (1.3) 

is the normalization factor. With the above definitions we have a model for 
a (directed) polymer in a random environment determined by a given 
realization of the potentials and (12) determines the probability of a con- 
figuration of the polymer having energy E(r) at temperature T =  l/ft. The 
free energy of the system is given as usual by 

1 
F~(co) = - ~  log Z~(co) (1.4) 

The ground state of the model is obtained by taking the limit of zero tem- 
perature ( 1 ~  oo). In this limit we have a measure supported on the set of 
paths with lowest energy with the ground state energy given by 

Eg,(co) = inf { E(r)" r a directed path from 0 to a? } (1.5) 

The optimization problem posed by (1.5) is a version of a model also 
known as first-passage percolation model in the probability literature (see 
ref. 12 for a review). Since here we are considering directed paths, we 
obtain what is usually called a directed or oriented first-passage percolation 
model. One may also consider the situation where the polymer is only 
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pinned at the origin but with its length (i.e., the number of edges) fixed. In 
this case we denote the corresponding measure on the space of directed 
paths of length n by 

exp[ - f i E ( r ;  co)] (1.6) 
/t~"(r; o9)- Z~ "(co) 

with free energy 

1 
F~ "(o9)= - ~  log z f " (  co) / s  (1.7) 

In general we will express thermal averages (i.e., averages with respect to 
the (random) Gibbs measures/t/~) by ( - )  and averages with respect to the 
random environment (realizations of the potential) by E(.). From now on 
we will assume, unless otherwise stated, that the v(e)'s have a finite second 
moment (E(vZ(e)) < ~) .  

Two quantities of interest in this model (which, as will be discussed 
shortly, turn out to be related to each other) are the large n behavior of the 
fluctuations of the free energy and the behavior of typical polymer con- 
figurations (w.r.t. the measures (1.2) and (1.6)). In particular, it is expected 
that, for large n, 

var(F~") ~ E[ (F~") 2 ] - EZ(F~ ") ~ n 2z (1.8) 

with 2' depending on fl and the dimension d. 
The conjectured picture is as follows (see ref. 13 for more details and 

additional references). For d >  3, and under some conditions on G (for 
example, G continuous and with an exponential tail should be more than 
enough), the system is expected to undergo a transition from a high tem- 
perature (low disorder) regime where the fluctuations of the free energy are 
of order 1 (so that Z=0) ,  to a low temperature (high disorder) regime, 
where 2' > 0, with the fluctuations in this regime being governed by the zero 
temperature exponent. For d ~< 3 (and again, under some conditions on the 
distribution G) it is conjectured that the fluctuations are determined by the 
zero temperature exponent for all T < oo, hence the behavior of the system 
is dominated by the disorder at all temperatures. 

A quantity of related interest is the behavior of typical paths with 
respect to the measure (1.6). In the infinite temperature/zero disorder limit 
we have/z~" ~ lto y'" weakly, with probability one. Here/~0Y"(. ) is a measure 
which assigns equal probability to all directed paths of length n. The dis- 
tribution of polymer configurations is independent of the random environ- 
ment and we have trivially a diffusive behavior that is, typical paths of 
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length I will have deviations of order 11/2 about the diagonal line (i.e., the 
line through the origin in the direction of the vector eai~= (1, 1,..., 1)). 
Alternatively, denoting by ~'k the position of the path after k steps, 
r ~ - ( k / d )  ea~ can be seen as a random walk on the d - 1  dimensional 
hyperplane through the origin, and orthogonal to e"a,-~. The absence of 
large fluctuations, for d i> 4, makes possible the use of perturbative methods 
to show that the diffusive behavior of typical paths (or equivalently, of the 
d - 1  dimensional random walk) persists for sufficiently high temperature 
or low disorder. Indeed it has been proven, for a slightly different model 
than the one studied here, (~4, ~5) that for high enough temperatures (low 
enough disorder) typical paths have the same behavior as in the infinite 
T/no disorder situation. In fact one can show, by the same method used by 
Bolthausen in ref. 15 (see also refs. 20, 21, 22), that for d~> 4, there exists 
a constant p =p(d )  < 1 such that if [E[exp-2flv(e)]/lI:2[exp-flv(e)] < 1/p 
then 

II ( 
-~ n 2"-~ p ~ n  

n 
F. -- ~1 e-'ai~g = d (1 .9 )  

for almost every realization of the random environment, with the exponent 
( assuming the value 1/2. Also, as in ref. 15, a central limit theorem result 
can be obtained. Namely, for almost all realizations of the random environ- 
ment, (F,-(n/d)gdi~g)/v/n converges weakly to a normally distributed ran- 
dom variable with r matrix having ( d - 1 ) / d  2 for its diagonal 
elements and - (  1/d 2) for the off diagonal ones. The exponent ( introduced 
above describes the transverse displacement of the polymer about the 
diagonal. It turns out that Z and ( are not independent of each other but 
are believed to obey the scaling relation Z = 2 ( - 1 .  This relation has been 
derived heuristically in several different ways (under, sometimes implicit, 
assumptions on the distribution of the potential) and for a variety of 
models for which the asymptotic behavior of the quantities considered here 
should be the same. Under appropriate assumptions on G. this relation is 
believed to hold in all dimensions and for all T <  oo. t~'4, ,3)In particular it 
implies that Z > 0 should be associated with super-diffusive behavior (i.e., 
( >  1/2). It turns out that for d = 2  some continuous versions of the 
polymer model have been shown to be closely related to the Burgers' equa- 
tion with n o i s e ,  t3' l, 4,5)This connection has been used to obtain an addi- 
tional (non-rigorous) scaling relation between the two exponents, namely 
( =  2Z.(1, 3. 5) Combining these relations one obtains Z = 1/3 and ( =  2/3 in 
two dimensions. For d > 2 exact values of the exponents are not known but 
it is believed that Z should decrease with increasing d. On the other hand 
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it seems to be an unsettled issue whether there is an upper critical dimen- 
sion above which X = 0 for all temperatures or if 2' > 0, therefore ~ > 1/2, 
in all dimensions, for low enough temperatures (strong enough disorder) 
(see refs. 1, 4, 28, 29). 

In the case where both ends are fixed one should, in principle, allow 
the above exponents to have a direction dependence, with (.~ describing 
transverse displacements about the line connecting the origin and the end 
point, say n~, and X.~ describing the asymptotic behavior of var(F~ ~) as n 
approaches infinity. It is nevertheless expected that these exponents are 
independent of the direction :~, (away from some special directions such as 
the coordinate axes, and under some conditions on the distribution of the 
random potential; see the discussion after Proposition 3) and that they 
assume the same values as in the free end case. 

In the following section we state our results. Initially we give some 
bounds on free energy fluctuations. The lower bound shows that in d =  2 
the free energy fluctuations in fact diverge for all temperatures, while the 
upper bound holds for all dimensions and can be summarized as Z ~< 1/2. 
Next we state two propositions concerning scaling inequalities between ver- 
sions of the exponents X and (, which hold at all temperatures. The first 
one has the form Z.,>~ [ 1 - ( . ~ ( d - 1 ) ] / 2 ,  for all :~. The second is a scaling 
inequality of the form (.~. ~< (1 + X')/2 where X' is an exponent related to X. 
Our last result is an upper bound on the transversal fluctuations of mini- 
mizing paths in the free end case, and in the diagonal direction (that is 
ff=.,~diag~ediag/N/~) for the fixed end case, under a "curvature assump- 
tion." Proofs are presented in Section 3. 

2. RESULTS 

Our first proposition extends some upper and lower bounds obtained 
for fluctuations of the ground state energy in the first-passage percolation 
modelt9, ,0)to finite temperatures The lower bound shows that under essen- 
tially minimal hypotheses on the distribution of the random potential the 
free energy fluctuations, for d =  2, diverge for all temperatures at least 
logarithmically fast. This of course does not provide any information on 
the exponent 25. The upper bound shows that fo r  all temperatures and all 
dimensions one has X ~< 1/2. In what follows 121 will denote the Euclidean 
norm of 2 and 121,= Y.~_, Ixil the L'  norm. We will also use the notation 
ed~ag= (1, 1,..., 1) and .~diag~ediax/~. 

Proposition 1. Consider the directed polymer model on 7/d+ with 
i.i.d, v(e)'s such that l:(v2(e)) < oo and var(v(e)) > 0. Then, 
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(a) For 0 < fl < ~ and d = 2 there exist constants 0 < c~(fl, G) < Go, 
such that for all ~ s 7/2 + 

var(F~) >i c I log Igl (2.1) 

(b) For 0 < fl < oo there exist constants 0 < c2(G, d) < oo such that 
for all ~ ~ Z a + 

var(F~) ~< c2 IXl (2.2) 

Furthermore, if E[exp(tv(e))] is finite for some t >0,  then for all 
0 < # < oo there exists constants 0 < C3, C4, C5 < oo (depending on #, G 
and d only) such that for all ~ ~ Z a+ 

u} <~ C3 e-c4" for u c5 (2.3) 

; by F~"  Remark. The above proposition stays true if we replace F# 
and [2[ by n. 

As pointed out in the introduction, free energy fluctuations are related 
to transverse displacements of polymer configurations. Our next two 
propositions establish some rigorous scaling inequalities between Z and (. 
The first one was originally derived by Wehr and Aizenman ('') for the 
ground state of the directed polymer model, and under somewhat restric- 
tive assumptions on the common distribution of the v(e)'s. It was later 
extended to more general distributions, and to a larger class of models, in 
ref. 10. Roughly speaking, it establishes that smaller transversal displace- 
ments of typical paths imply larger free energy fluctuations. In order to 
state the result we will have to introduce our versions of the exponents Z 
and (. We start by defining the exponent Z.~(fl) for ~ a unit vector in Rd+ 
a s  

X~(fl) =sup{y >~0: for some C>0 ,  var(F~ ~) >i Cn 2y for all large n} (2.4) 

(here we adopt the convention of computing quantities like F~ ~ at the point 
in 7/d+, having as coordinates the integer parts of the corresponding coor- 

n.~ dinates of n~). We define in a similar way the exponent Z s by replacing Fa 
by F~" in the above definition. For a set A c Rd+ and f ~ R  % define 
d( f, A)- inf# , ,4  [Z -# l ,  and the "cylinder of radius p in the ~ direction" 
%(p) as 

% ( p )  = { z E  �9 d(z, (2.5) 
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where Re = {22:2 e JR+ }. We denote by {r ~ ~,(p)} the set of paths starting 
at the origin and that stay inside ~ ( p ) .  We are now ready to introduce our 
versions of the exponent (. Roughly speaking (.,(fl) is such that, with large 
probability, the measure p}-* will be concentrated on directed paths in a 
cylinder of radius n r for all ~ > (.~. Our precise definition of (.~(fl) is the 
following 

~r.e(fl)- inf{~, >0:  p~e({r~C-(~(nr)} ) " - ' ~ ,  1 in probability} (2.6) 

We define an analogous exponent for the free end case as 

(f(fl) - inf{),  > O:/t~ "( { r ~ cg%,.,(nY) } ) "-" ~. 1 in probability} (2.7) 

We also define a version of the exponent ( in the free end case related to 
the transversal displacement of the endpoints P~ of polymer configurations 
a s  

('"d(fl)=--inf{),>O'l.tfi"({P,,e~,,,.,(nY)}) " - ' ~ ,  1 w.p.1} (2.8) 

Notice that the definition of (,,,,d(fl) is in terms of convergence with prob- 
ability 1 (that is, for (almost) every realization of the random environ- 
ment), while (s(fl) is defined in terms of convergence in probability. The 
following proposition states that if typical polymer configurations are con- 
fined to a cylinder of radius n ~ then free energy fluctuations are at least of 
the order of n I -ca-tt~/2. 

Proposition 2. Under the same hypotheses of Proposition 1 we 
have for any 0 < fl < ov and 2 ~ R d + 

1 - (.~( fl)(d - 1 ) 
X~(fl) >f 2 (2.9) 

Remarks. 1. An analogous result holds if one replaces X., and (.~ by 
Z f and ( f  respectively. 

2. If one assumes the conjectured scaling relation x f= 2( f -  1 then, 
combined with Proposition 2, it implies (s>~3/(3 + d )  and xf>>.(3-d)/ 
(3 + d) for all ft. In particular one obtains (f~> 3/5 and xf>~ 1/5 for d =  2. 

3. In a recent paper Licea et al., tts) using a combination of the zero 
temperature version of the above inequality and some geometrical 
arguments, derived the lower bound (i> 3/5 (for an appropriate version of 
the exponent () in the context of the (undirected) first-passage percolation 
model. 
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Our next result gives a version (in the form of an inequality) of the 
relation X = 2 ( - 1 ,  a zero temperature version of which was derived in 
ref. 10. It will involve an additional exponent Z' closely related to Z but 

"~ from its mean, will refer to which, instead of measuring deviations of F/t 
"~ from nf/t(~) where f/t(.~) (to be defined precisely later) is deviations of F/t 

the asymptotic free energy per (Euclidean) unit length in the .~ direction. 
Again we will need some preliminaries. We start with the definition of the 
function f/t(s which plays here the same role as the function/t(.g) in the 
first-passage percolation model (see ref. 12). Initially, we notice that for a 
fixed vector ~ ~ Z d + one has, for n, m positive integers 

1:( F~" + m ) .~ ) .~< [~( F~X- ) + I:(F7 -~ ) (2.10) 

that is, { I:(F~;)}.>_.~ is a subadditive sequence (one easily verifies that 
n.~ n~ n.~ E==(co E==(co)-(l~l , / f l )  n log d~< F~ (co) ~< ) which, combined with the 

second moment condition on the potential, guarantees that the expecta- 
tions in (2.10) are finite). Therefore, it follows from standard arguments 
that 

[E(F~;) 
lim ~ = f/t(.f) (2.11) 

1/ ---~ CK) n 

exists and f/t(:f) = in/', >I ! ~(" /t )In (in particular f/t(:f) ~< [E(F~)). The same 
procedure can be used to define fp(.,f) for all .~ with non-negative rational 
coordinates by considering limits along sequences where n~ ~ zd+. One can 
then verify that the function obtained in this manner satisfies, for all Y, 37 
having non-negative rational coordinates (see e.g., ref. 8): 

(i) f / t (2 . f )= 2f/~(.~) for all non-negative rational 2, and 

(ii) f/t(.f + p) ~< f/t(.f) + f/t(y). 

From (i) and (ii) we obtain convexity off( .f) ,  that is 

(iii) fp(2.~ + ( 1 - 2)  .7) ~< 2fp(.f ) + ( 1 - 2 )  f / t ( )7)  for all rational 2 in 
[0, 1]. 

From this convexity property it follows that fp(.~) can be extended to 
a convex function on R d continuous at interior points of this domain. It + ,  

turns out that, by invoking Kingman's subadditive ergodic theorem, tl6' 17) 
a stronger result than (2.11) can be obtained. Namely, for every . ~  zd+ 

lim F~~ = fp(~)  w.p.1 and in L l (2.12) 
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.ff 
Our exponent X' will be associated to deviations of F p from f~(:~). We 
define it as 

Z'(fl) = inf{7>0:  IF~-fp(:~)l ~< Igl ~ for all large ff w.p.1} (2.13) 

To finish with the preliminaries we discuss a "curvature assumption" that 
will be part of our hypotheses. For convenience we will assume that 
fp(r = 1, which can be done by taking v(e) ~ v(e) + Vo for every e and 
an appropriately chosen (non-random, fl dependent) Vo, without affecting 
thermal averages or sample to sample fluctuations. With this proviso we 
define the (fl dependent) set 

B o ( f l )  - {~: fa(~)  ~< 1} 

From f#(~d~g)= 1, the convexity of f p, and symmetry, it follows that B0 
is a bounded convex subset of Rd+, symmetric with respect to interchange 
of coordinates. Notice also that f#($~)= E[v(e)] +Vo, where $~ is a unit 
vector along the first coordinate axis. Next, for a fixed unit vector :~ ~ R~+, 
we consider a hyperplane T~ at R~ c~aBo = 0~ tangent to aBo, with 8Bo 
denoting the boundary of Bo (if there is more than one we make an 
arbitrary choice). 

Def in i t ion .  We say that :~ is a direction of curvature for Bo if there 
exists a constant r f l)> 0, such that for all ~ ~ T~ one has 

f /~ ( a ) >>. f /~ ( 6.~ ) + c l a - 6 ~1 ~ 

The above definition roughly says that 2 is a direction of curvature if one 
is able to insert a sphere (of sufficiently large radius) between the tangent 
plane Tr and the boundary of Bo at 0~. In particular aBo doesn't have to 
be smooth, being allowed to have a "comer" in this direction (see also the 
remark at the end of this section). 

P ropos i t i on  3 Consider the directed polymer model on Z a with �9 + 

i.i.d, v(e)'s and E(vE(e))< oo. 

(a) If :~ is a direction of curvature for Bo(fl) then 

1 + Z'(fl) r ( f l ) ~ < ~  (2.14) 

(b) If :r is a direction of curvature for Bo(fl) then for �9 ~ {f, end} 

1 + z'(/~) 
~*(fl) ~<----5-- (2.15) 
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The questions one would like to address then are on upper bounds for 
2" and on what can be said about the "curvature" properties of Bo. In the 
zero temperature case the extension of the upper bound, 2" ~< 1/2 to Z' ~< 1/2 
(under the assumption that ~_[exp(tv(e))] is finite for some t > 0) follows 
from the work of Alexander and of Kesten. ~s' 9~ In that case the bound was 
obtained by first deriving good (in this case exponential) estimates on the 

~ (for I = 1 /2  t9)) and subse- tail of the distribution of [E;g.,.-~_(Eg,)]/[.~[ ~ 
quently proving that the above estimate actually implies 2" ~< 2. t8~ For the 
finite temperature situation we can only go part of the way in establishing 
this result. The exponential estimate in Proposition 2 and the a-priori 
bound E(F~)~>f#(:~) imply that, with probability one, for all v>  1/2, 
F ~ -  f#(.~) i> - I~el ~ for I.el large enough. To conclude that 2" ~< 1/2 one 

.i: v would need an upper bound of the form ~_(F#)-f#(s I~1 for all v> 1/2 
and I~1 large enough (this was obtained, for the zero temperature case, by 
Alexander(8~). On the other hand an inspection of the proof of Proposi- 
tion 3 shows that in order to obtain the bounds ( I <  3/4 and (.~ ~< 3/4 for 
a given direction of curvature :~, (under the moment condition necessary to 
obtain the exponential estimate) it would suffice to obtain, for all e > 0, an 
upper bound of the form [E(F "*) - nf(.~) <~ C!2/'/I/2 +c. At the moment we can 
only prove such a bound for .~ =-~di,,g by an argument due to Sznitman t25) 
(in the context of Brownian motion in a Poissonian potential). 

P ropos i t i on  4. Consider the directed polymer model on Zd+ with 
i.i.d., bounded, v(e)'s. If-'~di,,.e is a direction of curvature for Bo(fl) then 

and, for �9 e { f end}, 

(a) (.,,,,,,(fl) ~< 3/4 (2.16) 

(b) (*(fl) ~ 3/4 (2.17) 

As a consequence of Proposition 2 (which shows that upper bounds on ( 
imply lower bounds on Z) and Proposition 4 it follows that for d =  2, if 
:~d~g is a direction of curvature for Bo(fl) then Z~,,,o,(fl)>~ 1/8, the same 
lower bound being true for Z:- 

Remark. Our definition of direction of curvature is a natural exten- 
sion to finite temperature of the definition used in ref. 10 for the zero tem- 
perature situation (first-passage percolation). In that case (see ref. 10 for a 
more complete discussion), it is known <~9~ that if the probability assigned 
to the smallest possible value of the potential is above the directed percola- 
tion critical value then Bo has a fiat piece and the scaling relation 2, = 2 ( -  1 
ceases to hold. In fact in this case one has, along the directions for which 
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B0 is flat, the exponents X., = 0  and (., = 1 (in their zero temperature ver- 
sion). On the other hand, one expects this to be the only situation where 
fiat pieces will be present. For all other distributions of the potential the 
relation X = 2~-1  should hold for every direction (except special directions 
such as the coordinate axis) with a curvature assumption (as defined for 
example in ref. 10) being satisfied. In the finite temperature situation we 
expect that due to entropy effects these strictly fiat parts should not occur. 
We notice however that the occurrence of percolation might still have an 
effect. In fact (as observed in refs. 20, 21, and 22 in the context of the model 
treated in ref. 14 and 15), the value of p(d) obtained in the derivation of 
(1.9) is given by the probability that the paths of two independent random 
walkers on Z d (both starting from the origin and increasing one of their + ~  

coordinates with equal probability at each step), have an edge in common. 
If one considers the situation where v(e) assumes the value 0 with proba- 
bility p then ~_[exp-2flv(e)]/~_2[exp-fly(e)] <~ lip for all fl, therefore if 
p > p(d) there is no strong disorder regime. It also turns out, as observed 
by Kesten (see Cox and Durrettt24)), that p(d) is an upper bound for the 

-o-d)  oriented percolation critical probability Pc ~ in d dimensions. It follows 
that in the situation mentioned above, where there is no strong disorder 
regime, one has actually the occurrence of oriented percolation of edges 
with the lowest possible value of the potential. A natural question is 
if the non-occurrence of a the strong disorder regime persists whenever 
there is oriented percolation of edges with the lowest possible value of the 
potential. 

3. P R O O F S  

The proof of the lower bound in Proposition 1 and of Proposition 2 
will be based on a general lower bound for variances of random variables 
which are themselves functions of a collection of random variables having 
some independence (see Lemma 1 for a precise statement). This bound has 
been used in similar contexts in refs. 9-11 having been derived in a some- 
what abstract setting in ref. 10, where it was used to obtain results for fluc- 
tuations in the zero temperature case. Here we will use the same notation 
and general setting used in that reference. Next, we introduce the notation 
and state the general lower bound in the form it will be used, and refer to 
ref. 10 for the details. We remark that the main ingredient (which is also 
what is used in obtaining the upper bound ('l~) is to write the random 
variable of interest as a sum of martingale differences. The variance of the 
corresponding sum is then given by the sum of the variances of these mar- 
tingale differences, and one estimates the variance of each term. We start with 
a random variable Y with IF(y2) < oo on the probability space (I2, ~ ,  P) 
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where 12=R1={09=(09i : ie I )}  is the space of real valued sequences 
indexed by a countable index set/ ,  ~ - =  B I is the usual a-field generated by 
Borel cylinder sets and P is a probability measure on (12, ~-). We denote 
by ~ ' (U)  with U= I the sigma-algebra generated by the random variable 
7~i, ~i((,0)=(,Oi, i E U. In our general setting, we have a sequence U,, U2,... 
of disjoint subsets of I and we express for each k, 09 as (09~, &k) where 09k 
(resp. &k) is the restriction of o) to Uk (resp. to I\Uk). We also have for 
each k, disjoint events D~ and D~ in :~vk. Define also 

(3.1) 

where 

Y~k(tbk) = sup Y((09k, Cbk)), Y~(~bk) = inf Y((09k, &k)) (3.2) 
t o  k E D O k o )  k E D I k 

A positive Hk represents a minimum amount that Y is reduced by changing 
09k from D~ to D o while keeping ask fixed. 

L e m m a  1. Assume the general setting just described and the fol- 
lowing three hypotheses about P, the Uk'S, the D~'s and Y: 

(i) 
pendent. 

Conditional on ~ ' ( I \Uk  Uk), the ~'(Uk)'s are mutually inde- 

(ii) 3p, q > 0 such that for any k, 

P(o)~eD ~ I,~(U~,))~>p, P(o)keD~l~(U~))>~q w.p.1 (3.3) 

(iii) 

Then 

for every k, Hk >I 0 w.p.1. 

var(Y) >~pq ~ P(Hk) 2 (3.4) 
k 

We refer the reader to (the proof of) Theorem 8 in ref. 10 for the proof of 
this Lemma. We will also make use of the following result about series in 
the proof of part a) of Proposition 1" 

L e m m a  2. For any positive a k ' S  and m >i 1 

~, a 2>f k -1 k - l  k -1/2 aj 
k - - I  l k----l j - - . l  

(3.5) 

Proof. See Lemma 2.1 in ref. 10. 
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P r o o f  o f  P r o p o s i t i o n  1. 

(i) Proof of lower bound. 

We apply Lemma 1 with I taken as the set of all edges in Z 2 P the 
product measure which has the joint distribution of the v(e)'s, Uk = {ek}, 
where el, e2 .... is an ordering of I in which all the edges at distance k from 

5 the origin come before those at distance k + 1, and Y= Fa. We also intro- 
duce the following notation: N,, for the number of edges e=(tL 6) for 
which 1611~< n, l e, ~r for the indicator function of the event that edge e k 

; = - ~ ( 1  ,) .The 6' belongs to the path r and ( r&)p  e, ~ D k s are taken as 

D ~  ( -  oo, 2], D~= [2+52 ,  oo) (3.6) 

It follows from Lemma 1 that 

NI.ell 
var(F~) >t pq y'  [[E(Hk)] 2 (3.7) 

k=l 

Here p = p(v(e) <~ 2), q = p(v(e) >t 2 + 62), with 2 and 62 > 0 chosen such 
that p, q >  0 (which is possible since var(v(e))> 0) and 

Hk(CO) = inf F~((cok, & , ) ) -  sup F~((cok, &k)) 

In order to estimate Hk(~O) we compute 

0 1 0  1 1 0 m - - ~  5 s 
0ogkr~= flOcoklogZp= f l Z ~ & o k Z a  

and since 

0 ; =  0 [ Nl'irl t ] 
O(,okZfl ~ k  ~ e x p  --fl E lej~rf'Oj 

j=l 

= - - f l  2 le,~rexp -- fl ~ l ej~r('Oj 
r j=l 

we obtain 

0 
&o---~k F ~ ( ( m k , (Ok))=/~(1 ; (cot, cb,) I> 0 e, ~ ~ ) ( ( ~ ,  ~ ) ) - - ( ' I , )  p , 

Consequently (using ( . )  for ( . )~ ) ,  

f2 f~ +~2 
,~ +a,~ 0 F~(x, &k) d x =  (rh,)(x, &k) dx Hk(m) = OCO, 

( 3 . 8 )  

(3.9) 

822/89/3-4-8 
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From (3.7) we then have 

var(F~) I> pq E 2 < rl,>(x, ~ , )  dx  
k----I 

and, using Lemma 2, we obtain the lower bound 

) var(F~) >I pq( 62 ) 2 k - 1 k - 

k = l  k = l  

j = !  

Now it suffices to show that, for k ~< I.~ll, 

j = l  

< rb>(x, (.bj) dx ]  >I Dk 

for some D > 0. A straightforward calculation gives, for co~, 1> o9,, 

<rlk>((,o'k, obk) exp-(flco~,) Z(ogk, &,) 
< rl,>(co,, Co,) exp-(r ico , )  Z(co~,, &,) 

>~ exp - (flco~,) 

and also 

a<~,> 
aO~k 

: - - f l < r l k> [  l -- <rl~> ] <~ O . 

Thus, <r/k>(x, cb,) is decreasing in x and it follows that, for co~, ~COk, 

<~/k>(co~, ~ , )  I> <r/,>(co,, 03,) 

This leads to the estimate 

~.= <,b>(x, 03)dx 

~>Z <,~j>(o.,j, a,) 
j - - I  

k 
= ~ exp - f12[ 1 - exp - fl(62) ] 

exp - (fix) dx] 

for k ~< I-~11 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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with the last equality following from the fact that any path from 0 to 2 
passes through k edges among the first Nk edges, if k ~< 12It. Now, the fact 

v 5 that Nk = O(k 2) immediately implies the desired lower bound for ar(Fp). 

(ii) Proof of upper bound. 

We follow here the basic strategy of ref. 9 where it was used to derive 
an upper bound in the zero temperature case. We start by expressing 
var(F~) as the sum of the variances of martingale differences. Introducing 

dk-~ [ IE(F~ 1 ffk)--E(F~ I ~k_,)] (3.15) 

where (#k = ~ ( {  e, } ) v ... v ~-( { ek} ), it follows from a standard calcula- 
tion that 

var(F~)= Y' E(A~)= y' [E[[F(zI21cffk_t)]  --- IF A2dG(ogk) (3.16) 
k = l  k = l  k = l  

where, in the last step, we used the independence of the COk'S, with G(OOk) 

denoting the distribution of COk. It will be convenient in what follows to 
introduce the i.i.d, random variables ak, independent of the tOk'S, and with 
the same joint distribution as the COk'S. We can then write A k as (with 1= 
denoting averages with respect to the tOk'S) 

dk fdG(ak)[iF([ ; F~(ak, &k) = F#(('Ok, ('~)k) - -  ] [ (ffk) ] (3.17) 

and, using Cauchy-Schwarz's inequality twice, 

d 2 ~< f dG(ak)[ IF([F~(a),, 05k)- F~(ak, d)k)]2 ] ffk)] (3.18) 

Now, from (3.8) 

[ 5 Ffl(('Ok, ('Ok)- 5 2 Fp(O'k, (-~k)] 

=[, 
o" k < r k 

12 k (rlk)(X, d)k) d x -  l~>,,,k (r/k>(X, d)k) dx 
a k 

= l~k <~'k (rik)(X, &k) dx + l~k>o, k (rlk)(X, d~k) dx 
k a k 
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and, from the fact that ( l ' ] k ) (X  , (~k) is decreasing in x, it follows that 

f A~ dG(cok)~ f dG(co~) f dG(ak)look--ak ]2 

x ~:[ 1,k < O,k(r/k) 2 (trk, dgk) + 1,k >o,k(rh,) 2 (09k, &k) I c--g t,] 

(3.19) 

It is now clear that the integrand on the r.h.s, of the above expression is 
symmetric in ogk and trk and we obtain 

f,d 2 dG(cok) ~< 2E[~ 2] [E[(r/k)2 [ o~_ , ]  (3.20) 

Hence, from (3.16) and (3.20), we finally have 

NI.ell 

var(F~)<~2~_[v(e):] Y' ~[(r&) 2] 
k---I  

~21:[v(e) 2] n: ~ (r/k) =2[E[v(e):] IXl, (3.21) 
k - - I  

(since every directed path to .~ contains I:~1, edges). 

(iii) The exponential estimate in part b) of Proposition 2 follows 
from a general martingale estimate derived by Kesten (Theorem 3 in ref. 9). 
In the case where the v(e)'s are bounded we can apply the theorem after 
making the following observations: 

(1) The martingale increments zlk are given by 

Ak= dG(ak) 1: (rlk)(x, dgk) dx 

which implies (since the potential is assumed to be bounded) 

[dk[ ~< c for some c < oo 

(2) 

fA~ dG(m~,) ~ 2[E[v(e) 2] g:[(q~,)2 [ ffk_l] 

(this is just (3.20). 
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(3) 

[ ]3)  </']k>2>U = 0  for u> I~l, 
k = l  

The hypotheses of Theorem 3 in ref. 9 are implied by 1), 2) and 3) and 
estimate (2.3) follows for bounded v(e)'s. The more general result under the 
exponential moment condition follows from the same theorem and a trun- 
cation argument analogous to the one used in ref. 9. 

Proof of Proposition 2. The proof goes as the proof of the lower 
bound in Proposition 1. With the natural extension of the general setting, 
introduced in the proof of Proposition 1, from Z 2 to z d+ we obtain the 
estimate 

var(F~.~) >t pq ~2 < l']k> n'~" (X, ('Ok) dx 
k = l  

(3.22) 

where now ~ is a unit vector in Rd+ and the sum is over all edges e = (if, ~') 
in 7/d with I~'[~ ~< n I~[~. From Cauchy-Schwarz's inequality we have 

[ Pq ~ E <rl,> "~ (x, Chk) dx (3.23) var(F~X) >I [NI..~I, n ff~(nY)[ ~k ~~("~) 

with IN1..~1, n ~(nY)l denoting the numbers edges in Ni.x.i, n ~(nY). Using 
the estimate (3.14) we obtain 

v a r ( F ~ ) > p q e x p - 2 f l 2 [  1 - exp- f l (S2) ]  2 [ 
fiE iN,,,.~l ' n ~.~.(nY)l ek er(r 

n:[ < r/k> "~ (cok, ~k)]] 2 

(3.24) 

Taking y = ( ~  + e with e > 0  it follows, from the definition of (.,, that 
E[Zek~;(,~)<r/k)(CO,, C-bk)] t> Can for all n large enough. Inequality (2.9) is 
now a consequence of the definition of the exponents X.~ and the fact that 
[Ni,.~l, c~ c~(nY(d-1))1 = O ( n l +  ~,(d--1)). The result for the free end case follows 
from a similar argument and we omit the details. 

Proof of Proposition 3. The constants ci appearing in the proof 
of this proposition will all be positive and finite, and may depend on fl, d, 
and G. 
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Proof of part (a). 

We start by picking an edge e k = (tT, if) belonging to a path from 0 to 
n O ~ -  ~,, with ~ a direction of curvature for Bo. Define also 

1 
F~: ~ = - ~  log Z~' -~ (3.25) 

with 

X, Zp ~(co) - exp[-fiE(r; co)] (3.26) 
r : 5 - . r  

Then (omitting the index fl from now on) 

Zo.az~.;. ZO. aZa. ;. 
;" = e - p~{ "* ) <~ (3.27) 

( rl, ) p Z-6, ; .  Z~,  ; " 

Next, for v > 0, consider the event 

Dv(a)--- { IF;" Y - f ( y - X ) l  ~ I~-Yl"  

for (.~, y ) = ( 0 ,  if), (g, .f.) and (0, s (3.28) 

From (3.27) it follows that, on D v(~), 

;" ~< e x p [ - f l ( f ( f f ) + f ( ~ . - a ) - f ( . ~ . ) ) ]  expH[lal"+ I~Z,-al~ + I~,1 Vl (,t~)p 

~< exp - (f16(if)) exp 3fl [.f~ [~ (3.29) 

with d f ( a ) = f ( f f ) + f ( f f . - f f ) - f ( g . ) .  Notice that here we used only a 
lower bound for Z ~ We now write ~ as f f = u ( O ~ + J a )  with 

. . . #  . . . ,  

O~ + A a ~ T~ and u < n. From the fact that s is a direction of curvature and 
f (2~  ) = 2f(:~ ) we have 

f (a) -u f (  O~ + Ja) >t uf( O~) + can IJal z (3.30) 

and 

u 2 

f (Y , , , - - f f )= f ( ( n - - u )  O ~ - - u J a ) > . ( n - - u  ) /(0,~)-.}-c 4 (n - -u )  IJalz (3.31) 

Therefore, 

( u) ~f(~)=c4  l + ( n _ u  ) u l J a l 2 ~ c 4 u l J a [  2 (3.32) 
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Now, if ffr162 y) and y > 0 ,  it follows, from a simple geometrical con- 
sideration, that luJal  >t c s n  y and consequently gs(a) t> c6(n2r'/u) >I c7 n2r- I. 
Substituting in (3.33) we get 

(r/k) ;" ~< exp( --tiC7 n2r'- 1) exp 3fl Ig.I ~ < exp-- f l (c7  n2~'- l --c8n") # 

~< c9 exp - (tic lo n2~'- l) if 2y - 1 > v (3.33) 

Finally, the definition of 2" implies that, for 2 y - 1  > v > x ' ,  
lim,_.o~ P(n~r 1 which, combined with (3.33) gives, for 
2 y -  1 >Z '  

~ c exp (tic } 
\ 

P 2 (r /k> fish 11 nd -- ,o n2~'- ') --* 1 (3.34) 
e, r ~(;(n2~- I ) / 

as n ~ oo. Part  (a) of Proposition 3 now follows. 

Proof of part (b). 

The proof is along the same lines as the proof of part (a) and we give 
here only a brief sketch for the case �9 = end. Again we start by picking an 
edge ek = (tT, 6) with 1611 = n. Introducing 

one has 

Z ~ , ~  Z ~ , ~  
( r / k )  f ' n  - -  

Defining, for v > 0, the event 

(3.35) 

D~(a) = {IF;" s - f ( Y - 2 ) 1  ~< 1 2 -  YI" 

for (if, 37)= (0, a) and (0, (n/d) ga,~g)} (3.36) 

one has for 2 y -  1 > v > X', lim,_, oo 1 [n,#:~.r "-  1 w.p.1. (recalling 
that now we are considering only edges of the form e k = ( a ,  ~ with 
IV'll =n)). By an argument similar to the one described in the proof  of part 
(a) one obtains 

(r/k) ~" ~ 0  (3.37) 
ek q~ ~.~(n2~,- I ) 

w.p.1, as n ~ ~ and part  (b) for the case �9 =end  follows. 
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Proof of Proposition 4. In view of the remarks following the 
statement of Proposition 3 it suffices to prove that, for every e > 0 ,  
E(F "~) -mf(~)<~ c l2m 1/2+~ with .~ = ~a~,g. We follow the same strategy as 
the proof of Theorem 3.1. in ref. 25 (see also ref. 26 for a similar type of 
argument in the first-passage percolation context). In order to simplify the 
notation we will take here fl = 1 since the factors of fl play no role and can 
be easily recovered if needed. As in the proof of Proposition 3 we consider 

n . - -  { : ~  7ja" I:~1, -- n} 

and define for positive integers m 

g~(m)=log ~ E [ e x p ( - 2 F ~  
.~ e Bin 

Taking now X ~ H.  + m  it follows that 

E E 
.~ e Hm fi, f i '  E Hm 

Consequently, 

exp( - F ~' ; )  ~< y' [ exp( - F ~' Y) ] Y', [ exp( - F ;' ' ; )  ] (3.38) 
f i  e Hm fi '  E Hm 

Raising both sides to the power 2, with 0 < 2 ~< 1, and averaging over the 
v(e)'s (using the fact that for all .7, Y' ~ Hm, F ~ ~ and F ; " ;  are independent 
random variables) one obtains 

E[ exp( - 2F ~ ; )  ] ~< E Y' 
y ~ H . ,  

exp(--2F ~ E Y' 
~ '  e H,,, 

exp( - 2F;" ; ) ]  

Now, summing over ~ ~ H.  + m  (the number of terms in the sum is of order 
(m + n) d- l) and taking logarithms one obtains the subadditive relation 

gx(m + n) <~ gx(m) + gx(n) + r(m + n) 

with r(m)=cl3 logm. It then 
limm,_, oo[ ga(m)/m ] exists and 

follows from ref. 27 that G~= 

<ga(m) r(m) oo r(k) ga(m) 
Ga I-4 ~ k(k+ 1-----~ <~ +cl4 

m m k - 2m m 

1 4- log m 
(3.39) 

m 
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for all m >/1. From the estimate 

gx(m) >f log [E[exp{--2F -6" {m/d) $diag] ~ - - ,~ - (F  -6" {m/d) ~diag) (3.40) 

we also obtain 

G;, >>. -2f(e-'ai,,g/d) (3.41) 

Therefore, combining (3.39) and (3.41) we have 

1 + log m 
_2f(gdiag/d ) ~g~(m)  + C14 (3.42) 

m m 

We now derive the upper bound for ga(m) in terms of [E[F O'2tm/d)~di'g] 
which allow us to obtain a bound on [E[F ~ --mf(~.d~,,g/d). We start 
by writing g~(m) as 

g,~(m)=log ~ exp(-2lE(F-6";)) IE[exp 2{IE(F-6";)-F -6";} ] (3.43) 
-~ ~ H,n 

Observing now that for every ~ H~ one has Z o, (2re~d)adia.e 

Z -d" ~Z ~" ~2m/d~ ~e,., and therefore ~_[ F -d" ~2m/d~ ~,,.~] ~< 2~[ F ~" "e] we get 

2 g;,(m) <~ ---~ IE[ F -6" t2,,,/d~ ~a,~,~] 

+log[ct6 mta- l )  sup N:[exp 2{~:(F~ ~ ]]  
.~ ~ Hm 

(3.44) 

Combining this with (3.42) then gives 

IF_[ F ~ t2m/d) ~,~,,,, ] __ 2mf( gdi,,g Id) 

(1 + log m) 1 
~<c~7 2 + ~ l o g  sup H:[exp 2{F(F~"~) -F  ~ ] (3.45) 

.'~ E Hm 

The above inequality is valid for every m>~ 1 and every 2~(0,  1]. In 
particular we can choose 2 depending on m. To finish the proof it suf- 
fices to show that for every e > 0  if We take 2 = m  -ti/2+~) then 
SUpm sup.e ~ nm E[ exp 2 { [E(F ~' ~) -- F ~' "~} ] < oo. This is now a consequence 
of the exponentialestimate_in part b) of Proposition 1 and the fact that for 
bounded v(e)'s [F~ ' ~ -  n:(F~"~)[ ~< c~8 Igl. In this case (2.3) is then also valid 
for u >  ct8 ~/ l~ l .  Therefore, (2.3) is valid for all u._This in_turn implies the 
desired uniform bound on H:[ exp( I~1 - '  ~/= § ~ { ~(F~ ~) -- F~ "~} ) ]- 
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